
Multiplying N -gram Matrices in Linear Space and Time

Kevin Tan Varun Tandon German Enik Eric Lou
tankevin@stanford.edu varunt@stanford.edu germans@stanford.edu erlou@stanford.edu

June 11, 2020

1 Abstract

Many modern machine learning models use matrices to encode the information required to solve a problem;
these matrices are often multiplied with vectors many millions of times during the training process, which
makes finding efficient algorithms for performing these multiplications a task of great practical interest.
Generally speaking, matrix-vector multiplication takes quadratic time and space. However, in the case of
N -gram matrices (a popular feature representation used in natural language models), there exist techniques
to perform this operation in linear time and space. In this article, we explore the mechanics and inspiration
for these techniques, and, along the way, probe the surprisingly deep connections between N -gram matrices
and generalized suffix trees.

1



2 Matrix-Vector Multiplication in Linear Space and Time

Before we begin, let’s address the possibility of matrix-vector multiplication in linear space and time.

2.1 Cursory Analysis

In terms of space, if we’re trying to store a 3× 3 matrix, shouldn’t this take 9 units1 of memory? Similarly,
if we’re trying to store a 4× 4 matrix, shouldn’t this take 16 units of memory? More generally, if we wanted
to store an n× n matrix, shouldn’t this take n2 units (a quadratic amount) of memory?

In terms of time, if we’re trying to multiply a 3× 3 matrix with a 3× 1 vector, don’t we need at least 9
multiplications and 6 additions? Similarly, if we wanted to multiply a 4×4 matrix with a 4×1 vector, don’t
we need at least 16 multiplications and 12 additions? More generally, if we wanted to multiply an n × n
matrix and an n × 1 vector, don’t we need at least n2 (a quadratic number) multiplications and n(n − 1)
(also a quadratic number) additions?

Are we on a wild goose chase? Or is our analysis somehow incorrect?
Rest assured, our analysis is not incorrect, but it does assume that we’re working with arbitrary matrices.

It most definitely takes quadratic space to store an arbitrary matrix and quadratic time to multiply an
arbitrary matrix with a vector. But if we restrict ourselves to matrices with a linear number of nonzero
entries-a type of sparse matrix-then what we want is indeed possible. Let’s see why.

2.2 Storing Matrices in Linear Space

If we only have a linear number of nonzero entries, the overwhelming majority of the entries are zero. Where
there’s a lot of redundancy, there’s a lot of potential for compression. In particular, instead of explicitly
storing every entry of a matrix M , let’s only explicitly store the nonzero ones; the zero entries can be stored
implicitly. One can imagine implementing this with a hierarchical map M with two layers of keys.

• Layer 1: The first key into M represents the row of a matrix. That is, M[i] = Mi.

• Layer 2: The second key into M represents the column of a matrix. That is, M[i][j] = Mij .

In particular, we only add the nonzero entries into map M. If the map doesn’t have an associated
value when the first key is r and the second key is c, then we know that Mrc = 0. In this manner, we’ve
successfully stored the nonzero entries implicitly without consuming space for them. Because we only have
a linear number of nonzero entries by assumption, storing such a matrix only takes linear space.

2.3 Multiplying Matrices in Linear Time

Given the representation of sparse matrices described in the previous section, it’s not too difficult to see
that we can matrix-vector multiplication in linear time. Specifically, since the zero entries would not have
contributed meaningfully to the result anyways, we can simply loop over the entries of M, multiply them
with the corresponding element in the vector, and then aggregate the results.

Because we loop over a linear number of nonzero entries, and perform a constant amount of work for
each entry, this also takes linear time overall. The conclusion, then, is that if we have a matrix with a linear
number of nonzero entries, then we can both store the matrix in linear space and multiply it in linear time.
The question then becomes: do N -gram matrices obey this constraint?

1For some measure of memory, be it bits or bytes.

2



3 Basic Terminology

Before we can answer this question, let’s define what an N -gram matrix is. Along the way, we pick up a few
other pieces of terminology and notation.

3.1 Document and Corpus

Informally, a document is a string and a corpus is a collection of documents. Formally, a document D =
d1d2 . . . dN is a sequence of characters di and a corpus C = {D1, D2, . . . , DM} is a set of documents Di. For
instance, below are some examples2 of documents. Collectively, they form a corpus.

D1 = THE2ONLY2SUBSTITUTE2FOR2GOOD2MANNERS2IS2FAST2REFLEXES

D2 = ARTIFICIAL2INTELLIGENCE2IS2NO2MATCH2FOR2NATURAL2STUPIDITY

D3 = TALK2IS2CHEAP2UNTIL2YOU2HIRE2A2LAWYER

C = {D1, D2, D3}

3.2 N-gram and N-gram Set

Informally, an N -gram is a string of N letters3 and an N -gram set is a collection of N -grams. Formally, an
N -gram S = s1s2 . . . sn is a sequence of characters si and an N -gram set S = {S1, S2, . . . , Sm} is a set of
N -grams Si. For instance, below are some examples of N -grams. Collectively, them form an N -gram set.

S1 = W

S2 = G

S3 = R

S4 = XE

S5 = CH

S6 = ST

S7 = STR

S8 = NTE

S9 = 2IS

S = {S1, S2, S3, S4, S5, S6, S7, S8, S9}

3.3 N-gram Matrix

An N -gram matrix X is a data structure that stores the frequencies with which the N -grams in an N -gram
set S appear in a corpus C. For instance, take our corpus from section 3.1 and N -gram set from section 3.2.
The corresponding N -gram matrix is shown below. Though arbitrary, it’s conventional to have the rows
represent the documents and columns represent the N -grams.

S1 S2 S3 S4 S5 S6 S7 S8 S9

D1 0 1 3 1 0 2 0 0 1
D2 0 1 3 0 1 1 0 1 1
D3 1 0 2 0 1 0 0 0 1

Because this notation will be useful later on, let XS be the column in the N -gram matrix corresponding
to the N -gram S. Here are some examples of this notation, so you can get a feel for what it means.

XS1
=

0
0
1

 XS5
=

0
1
1

 XS8
=

0
1
0


2In these examples, the 2 symbol represents a space.
3An N -gram could also mean a sequence of N words, phonemes, or syllables. While our analysis rests on the assumption

that an N -gram is a sequence of letters, it is by no means limited to it. In particular, the contents of this article can be easily
generalized to other interpretations of what an N -gram could mean; one can imagine preprocessing a string, assigning to each
word/phoneme/syllable an identifier, and then applying our analysis to those identifiers.

3



4 Using Suffix Trees to Understand N-gram Matrices

At this point we’ve established that if we can somehow reformulate an N -gram matrix in terms of a sparse
matrix, then we can store it using linear space and multiply it in linear time. This section is about how
this is possible. But first, let’s see how we can use suffix trees to answer essential questions about N -gram
matrices. In the following sections, let S be an N -gram, D be a document, and T be the suffix tree for D.

4.1 Does S Appear in D?

First of all, what does it mean for S to appear in D? One way to think about this is that S appears in D
if S is a substring of D, but this just begs the question: what does it mean for S to be a substring of D?
The Fundamental Theorem of Stringology tells us that S is a substring of D if and only if S is a prefix of a
suffix of D. While being quite the tongue-twister, this theorem is incredibly useful. Why? Recall that the
suffixes of D are formed by concatenating the characters along a root-leaf path in T . So, S is a prefix of a
suffix of D only if we don’t fall of the tree when using the characters of S to traverse T . This leads to an
extremely intuitive algorithm for finding out whether S appears in D.

4.2 How many times does S appear in D?

By the Fundamental Theorem of Stringology, this is equivalent to the question: how many suffixes of D is S
a prefix of? Just like before, let’s use S to navigate T . The suffixes which S is a prefix of can be constructed
by appending to S the characters along the remaining paths to leaf nodes (assuming we stay on the tree,
otherwise the answer is trivially zero). Because the remaining number of distinct paths to leaves is exactly
equal to the remaining number of leaves, the number of times S appears in D is equal to the number of
leaves in the subtree rooted at S4. This can be found efficiently with a simple depth-first traversal.

4Should processing the letters of S leave you in the middle of an edge, then the subtree is rooted at the next possible node.

4



5 Developing Useful Abstractions

In machine learning tasks, removing redundant features can yield improvements in memory usage, training
time, and model performance. For N -gram matrices, this amounts to removing N -grams that always has
the same frequency as some other N -gram. Let’s see how we can use T to identify such N -grams in X.

5.1 Equivalence Classes of N-grams and the Node Matrix X
To make our discussion concrete, let D = MISSISSIPPI. Note that the N -grams SIS, SISI, SISSIP, SISSIPP,
and SISSIPPI have exactly the same frequencies; this is no coincidence. From the suffix tree, it’s clear that
if you use any of these N -grams to traverse T , you end up at (or right before) the same node. Because
this is the case, these N -grams will all have the same frequencies, as we demonstrated in section 4.2. In
general, there are certain equivalence classes of N -grams corresponding to the nodes of the suffix tree, the
only exception being the root. Whenever you have equivalence classes, it suffices to only consider a single
representative element from each class.

The upshot is that some N -grams can be safely eliminated from S without impacting model performance
while decreasing memory usage and training time, which removes potentially a large number of columns
from X. We call the resulting matrix the node matrix and give it the symbol X . As we will see in the next
section, pruning these redundant N -grams actually unlocks further speedups by revealing interrelationships
between columns of the X .

5.2 From a Mechanical to an Operational Description

With the analysis we performed in section 5, we can revisit the question we asked ourselves in section 4.2.
Previously, we had a mechanical description of the answer: start at the root of the suffix tree T , make
your way down towards the leaves using the characters of S, and perform a DFS to determine the number
of leaf nodes that are still reachable. Now that we know there exist equivalence classes of N -grams and
that it’s really these equivalence classes that constitute meaningful features, we can develop an operational
description: the frequency with which S appears in D is equal to the number of leaves in the subtree rooted
at the representative node for the equivalence class of S.

5



6 Properties of the Node Matrix X
Armed with the operational description from section 5.2, we’ll see that even after eliminating useless N -
grams, there’s still redundant information in our N -gram matrix. In particular, the frequency with which
node appears is equal to the frequencies with which the node’s children appear. Why? Because the number
of leaves in the subtree rooted at a node is equal to the sum of the number of leaves in the subtrees rooted
at the node’s children, and our operational description translates these statements about leaves in subtrees
into equivalent statements about frequencies of appearance.

6.1 A Simple Example

Consider the simple example when D = HELLO. Below are the N -gram matrix and suffix tree for this
document. For simplicity, we’ve included a representative element from every equivalence class. We will see
later how to relax this assumption. As we can see, the column for L is the sum of the columns for LLO and
LO. In the suffix tree, the nodes for LLO and LO are the children of the node for L.

HELLO ELLO L LLO LO O

D 1 1 2 1 1 1

6.2 A Complex Example

Now for a more complex example, let D = MISSISSIPPI, where we’ve only included in the N -gram matrix
columns in the subtree marked in red for clarity. This time, notice that the column for S is the sum of the
columns for SSI and SI. If we look at the suffix tree, the nodes associated with SSI and SI are children of
the node associated with S. There are other examples of these linear dependencies for this document, and at
multiple depths in the tree. Can you spot them all?

S SSI SSISSIPPI SSIPPI SI SISSIPPI SIPPI

D 4 2 1 1 2 1 1

6



7 Using Generalized Suffix Trees to Understand N-gram Matrices

While we didn’t explicitly mention it, we actually made two simplifying assumptions thus far in our analysis.
First, we limited ourselves to a single document, which made X and X simple row vectors. Second, we
constrained ourselves to the case where S includes every equivalence class of N -grams, which made the
linear dependencies in X and X easier to reason about. In this section, we relax the first assumption.
Relaxing the second has been left as an exercise for the adventurous reader.

7.1 Generalized Suffix Trees

Very little of our analysis actually changes when we consider multiple documents; the most notable difference
is that we now need to build a generalized suffix tree. Because such data structures are not the focus of this
article, we won’t dwell on their intricacies. It suffices to say that this is done by taking a corpus, appending
unique sentinel characters to each document so we can differentiate the suffixes of one document from those
of another, and constructing a Patricia trie over the suffixes of these slightly modified documents. Let’s
revisit some of the previous questions we asked ourselves to see how the generalized suffix tree will help us.

7.2 Does S appear in Di?

Contrast this with what we asked ourselves in section 4.1. With multiple documents, we need to specify
the specific document Di that we’re interested in determining whether or not S appears in. Previously, our
algorithm consisted of walking down T using the characters of S and reporting whether or not we fall off the
tree. What this algorithm was doing was telling us whether S appears in any of the documents in our corpus
C; this worked because C was just the singleton containing D. Generalizing this to multiple documents
requires an additional step. We perform the same tree traversal as before, reporting that S does not appear
in Di if we fall off, but, if we don’t, we need to perform a DFS to determine if any of the leaves in the subtree
belong to Di. If so, then S appears in Di. Otherwise, it does not (it appears in some other Dj where i 6= j).

7.3 How many times does S appear in Di?

The procedure for answering this question is almost exactly the same as that for answering the question in
the previous section. The only difference is that we’re not interested in whether or not any leaves in the
subtree satisfy the property that they belong to Di, but, rather, how many leaves satisfy this property. The
practical consequence of this is that instead of stopping at the first leaf that belongs to Di in the subtree we
reach after navigating T with S, we actually need to explore all of the leaves in the subtree and count the
number of leaves that belong to Di.

7.4 Linear Dependencies of Columns

An interesting and important observation is that the columns of the N -gram matrix are still interrelated when
we generalized to multiple documents. The reason why this is the case is because these interrelationships hold
for each individual row in the N -gram matrix and, because the rows do not interact, these same relationships
still hold when we consider all of the rows simultaneously.

7



8 Multiplying N-gram Matrices in Linear Space and Time

Alas! Our journey has come to an end; everything is in place to discuss how we can multiply N -gram matrices
in linear space and time. To be pedantic, this technique doesn’t apply to arbitrary N -gram matrices but
specifically to node matrices (N -gram matrices without redundant columns). This isn’t really a limitation,
however, because, as mentioned in section 5.1, this is almost always what we want.

8.1 Computing Xw in Linear Space and Time

We saw in section 7.4 that if p was a node in T and c1, . . . , cn were its children, then Xp =
∑

i Xci . This
is an interesting observation, but what does it have to do with efficient matrix-vector multiplication? Well,
let’s assume for the moment that p and c1, . . . , cn were the only nodes in our generalized suffix tree. This
means that our node matrix might5 look something like

X =
(
Xc1 . . . Xcn Xp

)
.

8.1.1 Reformulating the Operation

Let’s see what insights we might derive by actually multiplying the corresponding matrix with a vector w,
recalling that matrix-vector multiplication can be thought of as a linear combination of the matrix columns.

Xw = wc1Xc1 + · · ·+ wcnXcn + wpXp

= wc1Xc1 + · · ·+ wcnXcn + wp

∑
i

Xci

= (wc1 + wp)Xc1 + · · ·+ (wcn + wp)Xcn

Notice that the only columns that remain are the columns that correspond to the children of p. In fact, we
can reformulate Xw as Φβ where Φ and β are defined in the following manner.

Φ =
(
Xc1 . . . Xcn 0

)
β =

(
wc1 + wp . . . wcn + wp 0

)T
This insight—the ability to reformulate our original operation in terms of a different matrix and vector—is
a general one and is not limited to the specific example considered above. The interpretation of this result
is that we don’t actually need to multiply any of the columns corresponding to an internal node p of T ; we
can simulate this by passing the number we would’ve needed to multiply Xp by—wp—down to p’s children.

8.1.2 Analyzing the Space and Time Complexity

In general, the only nonzero columns in matrix Φ are going to be the ones that correspond to the leaves in
T . Because there are a linear number of leaves in a suffix tree, there are a linear number of nonzero columns
in Φ. Since leaves correspond to suffixes and each suffix can only belong to one document (due to the unique
sentinels we appended to each document during the construction of T ), each of these columns has exactly
one nonzero entry. This means that Φ satisfies the sparsity condition described in section 2, which allows Φ
to being stored in linear space and multiplied in linear time. Constructing β can also be done in linear time
by performing a simple top down traversal of the suffix tree, which has a linear number of nodes.

5Any permutation of the columns would be an equally valid node matrix.

8



8.2 Computing X Ty in Linear Space and Time

Depending on the context, it may be necessary to multiply the transpose of the node matrix instead. This
can also be done in linear time. To see why this is the case, let’s reuse the setup from section 8.1.

X T =
(
Xc1 . . . Xcn Xp

)T
8.2.1 Reformulating the Operation

Let’s see what insights we might derive by actually multiplying X T with a vector y, recalling that matrix-
vector multiplication can be thought of as taking the dot product of the matrix rows with the vector y.

X T y =
(
X T

c1y . . . X T
cny X T

p y
)T

=
(
X T

c1y . . . X T
cny (

∑
i Xci)

T y
)T

=
(
X T

c1y . . . X T
cny

∑
i X T

ci y
)T

This insight suggests that we can simply compute the dot products for the children and simply add them
together to get the value in the output vector corresponding to the parent. In contrast to the previous
section where the tree traversal was top-down and performed before the multiplication takes place, we now
have to traverse the tree bottom-up and do this as the multiplication is taking place.

8.2.2 Analyzing the Space and Time Complexity

We’ve already address why Φ takes a linear amount of space to store. All that remains is analyzing why this
operation takes linear time to compute. It takes a constant amount of time to multiply such vectors. Since
we need to perform a linear number of such multiplications because there is a linear number of leaves, this
takes linear time. Filling out the other entries of the result vector with a bottom up traversal of the suffix
tree also takes linear time because it involves just adding a constant number of things.

9 Conclusion

The N -gram matrix, a critical component of many popular machine learning models in the field of natural
language processing, can be represented in linear space and multiplied in linear time. This is done by first
recognizing and removing redundant N -grams which leaves us with a node matrix X , and then resolving the
linear dependencies between the remaining columns which leaves us with a leaf label matrix Φ which has a
linear number of nonzero entries; these kinds of matrices can be represented in linear space and multiplied
in linear time. Multiplying X with a vector w requires transforming w into β via a top down traversal of
the corresponding generalized suffix tree, propagating weights downward. Multiplying X T with a vector y
requires a bottom up traversal of the corresponding generalized suffix tree, propagating intermediate results
upward. None of these incredible improvements would have been possible without having recognized and
explored the intimate relationship between N -gram matrices and generalized suffix trees.

10 Creative Component

We made a website that contains everything in this paper, a lot of interactive visualizations for better under-
standing, and bench-marking analysis of our implementation of section 8.1. Here’s the link: https://varun-
tandon.github.io/FastMatrixMultiplicationSuffixTrees/

9


